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Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with 

no working.  Answers must be supported by working and/or explanations.  In particular, solutions found 

from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find  
a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks may 

be given for a correct method, provided this is shown by written working.  You are therefore advised to show 

all working. 

1. [Maximum mark:  18] 

 The binary operator multiplication modulo 14, denoted by * , is defined on the set 
S ={ , , , , , }2 4 6 8 10 12 .

 (a) Copy and complete the following operation table.

* 2 4 6 8 10 12

2

4 8 2 10 4 12 6

6

8

10 6 12 4 10 2 8

12 [4 marks]

 (b) (i) Show that { , *}S  is a group.

  (ii) Find the order of each element of { , *}S .

  (iii) Hence show that { , *}S  is cyclic and find all the generators. [11 marks]

 (c) The set  T  is defined by { * : }x x x S∈ .  Show that { , *}T  is a subgroup of { , *}S . [3 marks]

2. [Maximum mark:  7] 

 The universal set contains all the positive integers less than 30.  The set  A  contains 

all prime numbers less than 30 and the set  B  contains all positive integers of the form 

3 5+ ∈n n( )  that are less than 30.  Determine the elements of

 (a) A B\ ; [4 marks]

 (b) A B∆ . [3 marks]
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3. [Maximum mark:  10]

 The relation  R  is defined for a b, ∈
+ such that  aRb  if and only if a b2 2

−  is divisible 

by 5.

 (a) Show that  R  is an equivalence relation. [6 marks]

 (b) Identify the three equivalence classes. [4 marks]

4. [Maximum mark:  11]

 The function f :   + + + +

× → ×  is defined by f x y xy
x

y
( , ) ,=











2 .

 Show that  f  is a bijection.

5. [Maximum mark:  14]

 (a) Given that  p ,  q  and  r  are elements of a group, prove the left-cancellation rule, 

i.e. pq pr q r= ⇒ = .

  Your solution should indicate which group axiom is used at each stage of  

the proof. [4 marks]

 (b) Consider the group  G , of order 4, which has distinct elements  a ,  b  and  c  and 

the identity element  e .

  (i) Giving a reason in each case, explain why  ab  cannot equal  a  or  b .

  (ii) Given that  c  is self inverse, determine the two possible Cayley tables for  G .

  (iii) Determine which one of the groups defined by your two Cayley tables   
is isomorphic to the group defined by the set { , , , }1 1− −i i  under 

multiplication of complex numbers.  Your solution should include a 

correspondence between a b c e, , ,  and 1 1, , ,− −i i . [10 marks]


